

Escola Superior de Tecnologia de Tomar

Engenharia Electrotécnica e de Computadores

Licenciatura, 1º Ciclo

Plano: Despacho nº 10766/2011 - 30/08/2011

Ficha da Unidade Curricular: Sistemas Digitais

ECTS: 6; Horas - Totais: 162.0, Contacto e Tipologia, T:28.0; PL:42.0; OT:5.0;

Ano letivo: 2019/2020

Ano | Semestre: 1 | S1

Tipo: Obrigatória; Interação: Presencial; Código: 91122 Área Científica: Sistemas Digitais e Computadores

Docente Responsável

Manuel Fernando Martins de Barros Professor Adjunto

Docente(s)

Pedro Manuel Granchinho de Matos Professor Adjunto Manuel Fernando Martins de Barros Professor Adjunto

Objetivos de Aprendizagem

Desenvolver competências nas áreas da lógica digital: Sistemas de numeração; Portas lógicas e Álgebra de Boole. Capacidade para projetar e analisar circuitos combinacionais e sequênciais LSI, MSI e LSI. Explorar as técnicas de projeto de dispositivos lógico-programáveis e de microprocessadores.

Conteúdos Programáticos

- 1) Introdução 2) Funções Lógicas
- 3) Simplificações de expressões lógicas
- 4) Representação digital de informação
- 5) Circuitos digitais e famílias lógicas
- 6) Circuitos Combinacionais de média complexidade
- 7) Análise e Sintese de Circuitos sequenciais
- 8) Projeto de circuitos digitais

- 9) Contadores, Registos e Memórias
- 10) Dispositivos de Lógica Programável
- 11) Introdução aos Microprocessadores

Conteúdos Programáticos (detalhado)

- 1) Introdução.
- Organização da disciplina;
- Conceitos introdutórios;
- Quantidades digitais e analógicas: bits, níveis lógicos e sinais digitais;
- Operações e funções lógicas básicas;
- Circuitos digitais integrados.

2) Funções Lógicas

- Funções e expressões algébricas Booleanas;
- Leis, teoremas e postulados da Álgebra de Boole;
- Formas normalizadas das expressões booleanas e tabelas de verdade;
- Representação e minimização de funções booleanas;
- Mapas de Karnaugh, adjacência lógica e agrupamentos.
- 3) Simplificações de expressões lógicas
- Simplificação de expressões lógicas utilizando os Postulados da Álgebra de Boole;
- Simplificação de expressões lógicas utilizando os Mapas de Karnaugh.
- 4) Representação digital de informação
- Bases de numeração e conversão entre bases;
- Sistemas de numeração;
- Operações aritméticas nas diferentes bases;
- Códigos para representação de números com sinal (complemento para 1 e para 2);
- Códigos binários para representação de números decimais;
- BCD, Excesso-3, Código Grey e Código ASCII.
- 5) Circuitos digitais e famílias lógicas
- Famílias lógicas TTL; Família CMOS;
- Atraso de propagação das portas lógicas e factor de mérito;
- Detecção de falhas na realização de circuitos digitais
- Saídas em "Totem-Pole" e saídas em três estados.
- 6) Circuitos Combinacionais de média complexidade
- Concretização de lógica combinatória em circuitos lógicos;
- Multiplexers e demultiplexers;
- Comparadores lógicos;
- Circuitos aritméticos (somadores, subtractores e multiplicadores);
- Codificadores e descodificadores;
- 7) Circuitos sequenciais básicos
- Comportamento sequencial de circuitos;

- Circuitos sequenciais Síncronos e Assíncronos;
- Elementos básicos: Latch NOR, NAND e Latch D;
- Flip-flops: JK, D e T;
- Máquinas de Moore e de Mealey;
- Sinal de relógio

8) Análise e projeto de circuitos sequenciais

- Análise e síntese de circuitos sequenciais;
- Circuitos auto-correctores;
- Projeto de circuitos sequenciais de baixa complexidade;
- Realização de circuitos sequenciais;

9) Contadores, Registos e Memórias

- Características adicionais e utilização dos registos de deslocamento;
- Contadores síncronos/assíncronos Incrementador e Decrementador;
- Contadores por pulsação ("Ripple Counters");
- Circuitos integrados contadores;
- Estrutura das memórias de semicondutores;
- Memórias só de leitura, ROMs; Memórias de acesso aleatório RAMs;
- Implementação com ROMs.

10) Dispositivos de Lógica Programável

- Introdução ao estudo de lógica programável;
- Dispositivos programáveis EPROM, FPLAs, PLAs, PALs;
- Implementação de circuitos combinatórios/sequenciais programáveis;
- Programação de PALs. Exemplos de aplicações;
- 11) Introdução aos microcontroladores

PARTE PRÁTICA LABORATORIAL:

Pretende-se que os alunos apliquem os conhecimentos adquiridos nas aulas teóricas na realização dos seguintes trabalhos de laboratório:

- P1) Implementação de uma função lógica em laboratório.
- P2) Implementação de uma montagem com um conversor BCD de sete segmentos e um contador de 4 bits.
- P3) Implementação de um conversor BCD de sete segmentos com multiplexers.
- P4) Implementação de um conversor analógico digital (ADC).
- P5) Implementação de um contador com flip-flops J-K e do tipo D.
- P6) Implementação de um controlador lógico para um motor de passo utilizando flip-flops JK.
- P7) Programação de dispositivos lógico-programáveis.

Metodologias de avaliação

Exame escrito (50%) Trabalhos de casa e laboratórios (40%) Projeto final (10%) Nota:

Mínimo de 50% a cada uma das componentes de Avaliação

Software utilizado em aula

Ferramentas gratuitas:

Logisim (http://www.cburch.com/logisim)

Eagle (http://www.cadsoftusa.com)

LTSpice (http://www.linear.com/designtools/software/)

Ferramentas comerciais:

MultiSim (http://www.ni.com/multisim/pt/)

Proteus (http://www.labcenter.com/)

Estágio

Não aplicável.

Bibliografia recomendada

- Dias, M. (2013). Sistemas Digitais Princípio e prática (Vol. 1).Portugal: https://www.fca.pt/cgi-bin/fca_main.cgi/?op=2&isbn=978-972-722-700-6: FCA Editora de Informática, Lda
- Monteiro, J. e Arroz, G. e Oliveira, A. (2009). *Arquitectura de Computadores: dos Sistemas Digitais aos Microprocessadores* (Vol. 1).Portugal:

http://www.wook.pt/ficha/arquitectura-de-computadores/a/id/190902: IST - Instituto Superior Técnico

- Tocci, R. e Moss, G. (2009). Digital Systems Priciples and Applications (Vol. 1). (pp. 992).http://www.pearsonhighered.com/educator/product/Digital-Systems-Principles-and-Applications-11E/9780135103
 Perason Prentice Hall
- Barros, M. (0). Sebenta e Slides de Sistemas Digitais (PT) Acedido em 24 de setembro de 2015 em http://www.e-learning.ipt.pt/course/view.php?id=310

Coerência dos conteúdos programáticos com os objetivos

Os conteúdos programáticos definidos cobrem um largo espectro de aplicações e permitem aos alunos ter a capacidade de dominar os conceitos e os instrumentos básicos dos Sistemas Digitais. Serão apresentados as ferramentas essenciais, para o aluno projetar, simular, implementar e testar Circuitos Combinatórios, Sequenciais e de Lógica Programável, aplicados nos mais diversos domínios como, projeto básico de portas lógicas, contadores e controladores digitais, conversão analógico digital, projetos de máquinas de estado finito, etc. Privilegiou-se uma abordagem mais orientada para a prática, na medida em que nos parece ser esta a formula que mantém os estudantes mais motivados.

Metodologias de ensino

Aulas teóricas expositivas, Aulas de resolução de problemas; Aulas práticas laboratoriais.

Coerência das metodologias de ensino com os objetivos

Na unidade curricular de Sistemas Digitais, privilegiou-se, uma metodologia mais orientada para a demonstração de conceitos teóricos e da ilustração de aplicações práticas, na medida em que nos parece ser esta a formula que mantém os estudantes mais motivados. Nas aulas teórico-prático será feito um acompanhamento aos alunos, através do esclarecimento de duvidas, da resolução de exercícios e da orientação de trabalhos práticos laboratoriais que ilustram de uma maneira objetiva as matérias descritas nos objetivos da unidade curricular. A aplicação desta metodologia pedagógica visa desenvolver no aluno as competências que o permitam pesquisar e interpretar informação de forma autónoma e desenvolver as capacidades de reflexão e autocrítica na avaliação dos problemas que lhe são propostos. Serão realizados trabalhos de grupo, que permitirá ao aluno aplicar os conhecimentos adquiridos e desenvolver a sua capacidade de comunicação, num ambiente de trabalho de equipa e de partilha de conhecimentos.

Língua de ensino	
Português	
Pré-requisitos	
Não aplicável.	
Programas Opcionais recomendados	
Não aplicável.	
Observações	
Docente responsável	