

Secola Superior de Tecnologia de Tomar

TeSP - Automação Industrial

Técnico Superior Profissional

Plano: Registo de alteração CTeSP: ACTeSP-ID-171 (09-11-2022)

Ficha da Unidade Curricular: Arquitetura de Microcontroladores

ECTS: 4; Horas - Totais: 108.0, Contacto e Tipologia, TP:45.0;

Ano | Semestre: 1 | S2

Tipo: Obrigatória; Interação: Presencial; Código: 626313 Área de educação e formação: Electrónica e automação

Docente Responsável

Carlos Alberto Farinha Ferreira Professor Adjunto

Docente(s)

Carlos Alberto Farinha Ferreira Professor Adjunto Pedro Manuel Granchinho de Matos Professor Adjunto

Objetivos de Aprendizagem

Esta unidade tem por objetivo realizar uma introdução à programação de microcontroladores. Os alunos terão contacto com a plataforma Arduino, o que permitirá a aprendizagem das principais funcionalidades dos microcontroladores com recurso a ferramentas de desenvolvimento relativamente simplificadas.

Objetivos de Aprendizagem (detalhado)

Esta unidade tem por objetivo realizar uma introdução à programação de microcontroladores. Os alunos terão contacto com a plataforma Arduino, o que permitirá a aprendizagem das principais funcionalidades dos microcontroladores com recurso a ferramentas de desenvolvimento relativamente simplificadas.

Pretende-se que, após a Unidade Curricular, os alunos tenham a capacidade de realizar aplicações de microcontroladores, ao nível da sua programação e dos circuitos básicos de interface com o mundo real.

Ano letivo: 2022/2023

Conteúdos Programáticos

- 1) Introdução aos sistemas de microprocessadores/microcontroladores;
- 2) Representação de dados e aritmética de computadores;
- 3) Plataforma Arduino ATMega328P/Mega2560: arquitetura, funcionalidades e periféricos;
- 4) Programação do Arduino ATMega328P: linguagem de programação e instruções;
- 5) Recursos avançados: temporizadores, interrupções e comunicações;
- 6) Projeto de sistemas baseados em Arduino.

Conteúdos Programáticos (detalhado)

- 1) Introdução aos sistemas de microprocessadores/microcontroladores:
- a) características dos microprocessadores;
- b) características dos microcontroladores;
- c) noções de sistemas embebidos.
- 2) Representação de dados e aritmética de computadores:
- a) Representação binária de inteiros positivos;
- b) Representação binária de inteiros negativos;
- c) Representação binária de números reais, vírgula

flutuante;

- d) Tipos de dados em C.
- 3) Plataforma Arduino ATMega328P/Mega2560:
- a) Arquitectura;
- b) Ambiente de desenvolvimento;
- c) Entradas/saídas digitais;
- d) Entradas analógicas;
- e) Saídas PWM.
- 4) Programação do Arduino ATMega328P/Mega2560:
- a) Linguagem de programação e ambiente de

desenvolvimento:

- b) Instruções gerais;
- c) Bibliotecas específicas.
- d) Introdução ao TinkerCAD ferramenta de programação gráfica para Arduino.
- 5) Recursos avançados:
- a) Temporizadores;
- b) Interrupções;
- c) Introdução às comunicações série, SPI e I2C e Bluetooth.
- 6) Projecto e concepção de pequenas aplicações de microcontroladores com plataforma Arduino ATMega328P/Mega2560.

Metodologias de avaliação

O método de avaliação consiste na realização de prova escrita (50% da nota final) e na realização de trabalhos práticos laboratoriais (50% da nota final).

Software utilizado em aula

- Software de desenvolvimento para Arduino (IDE);
- Simulador Proteus Design Suite;
- TinkerCAD software Tool.

Estágio

Não aplicável.

Bibliografia recomendada

- Margolis, M. (2011). *Arduino Cookbook* . 1^a, O'Reilly. et al. (2014). *GreenT: guião de construção e programação* . -, -. Tomar
- Barros, M. (2020). Acetatos de Arquitetura de Microcontroladores . -, -. Tomar

Coerência dos conteúdos programáticos com os objetivos

Nesta unidade serão ministradas aulas teórico-práticas nas quais se procederá primeiramente à exposição dos conteúdos programáticos. De seguida pede-se que estes conceitos sejam postos em prática pelo estudante, ao concretizar utilizações/aplicações, sob a forma de trabalhos práticos que repercutam a matéria em causa. Esta lógica permite ao estudante adquirir o conhecimento identificado no programa.

Metodologias de ensino

Aulas teórico-práticas onde são expostos os conceitos e resolvidos casos práticos.

Coerência das metodologias de ensino com os objetivos

Nesta unidade serão ministradas aulas teórico-práticas nas quais se procederá primeiramente à exposição dos conteúdos programáticos. De seguida pede-se que estes conceitos sejam postos em prática pelo estudante, ao realizar aplicações concretas. Esta lógica permite ao estudante adquirir o conhecimento, e exercitá-lo e validá-lo, de modo a obter as aptidões necessárias para a criação de aplicações embebidas baseadas em microcontroladores.

Língua de ensino

Português

Pré-requisitos

Não aplicável.

Programas Opcionais recomendados

Não aplicável.

Observações

Objetivos de Desenvolvimento Sustentável:

- 4 Garantir o acesso à educação inclusiva, de qualidade e equitativa, e promover oportunidades de aprendizagem ao longo da vida para todos;
- 7 Garantir o acesso a fontes de energia fiáveis, sustentáveis e modernas para todos;
- 8 Promover o crescimento económico inclusivo e sustentável, o emprego pleno e produtivo e o trabalho digno para todos;
- 9 Construir infraestruturas resilientes, promover a industrialização inclusiva e sustentável e fomentar a inovação;
- 11 Tornar as cidades e comunidades inclusivas, seguras, resilientes e sustentáveis;
- 12 Garantir padrões de consumo e de produção sustentáveis;

Docente responsável		
	_	